Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens.

نویسندگان

  • Johnson R Haas
  • Thomas J DiChristina
چکیده

Shewanella putrefaciens, a heterotrophic member of the gamma-proteobacteria is capable of respiring anaerobically on Fe(III) as the sole terminal electron acceptor (TEA). Recent genetic and biochemical studies have indicated that anaerobic Fe(III) respiration by S. putrefaciens requires outer-membrane targeted secretion of respiration-linked Fe(III) reductases. Thus, the availability of Fe(III) to S. putrefaciens may be governed by equilibrium chemical speciation both in the solution phase and at the bacterial cell-aqueous or cell-mineral interface. In the present study, effects of Fe(III) speciation on rates of bacterial Fe(III) reduction have been systematically examined by cultivating S. putrefaciens anaerobically on a suite of Fe(III)-organic complexes as the sole TEA. The suite of Fe(III)-organic complexes spans the range of stability constants normally encountered in natural water systems and includes Fe(III) complexed to citrate, 5-sulfosalicylate, NTA, salicylate, tiron, and EDTA. Rates of bacterial Fe(III) reduction in the presence of dissolved chelating agents correlate with the thermodynamic stability constants of the Fe(III)-organic complexes, implying that chemical speciation governs Fe(III) bioavailability. Equilibrium Fe(III) sorption experiments measured the reversible coordination of Fe(III) with S. putrefaciens as a function of cell/Fe(III) concentration, time, and activity of competing chelating agents. Results show that S. putrefaciens readily sorbs dissolved Fe(III) but that adsorption is restricted by the presence of strong Fe(III)-chelating agents. Our results indicate that dissimilatory Fe(III) reduction by S. putrefaciens is controlled by equilibrium competition for Fe(III) between dissolved organic ligands and strongly sorbing functional groups on the cell surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens.

Under anaerobic conditions, Shewanella putrefaciens is capable of respiratory-chain-linked, high-rate dissimilatory iron reduction via both a constitutive and inducible Fe(III)-reducing system. In the presence of low levels of dissolved oxygen, however, iron reduction by this microorganism is extremely slow. Fe(II)-trapping experiments in which Fe(III) and O(2) were presented simultaneously to ...

متن کامل

Reduction of Fe(III) colloids by Shewanella putrefaciens: A kinetic model

A kinetic model for the microbial reduction of Fe(III) oxyhydroxide colloids in the presence of excess electron donor is presented. The model assumes a two-step mechanism: (1) attachment of Fe(III) colloids to the cell surface and (2) reduction of Fe(III) centers at the surface of attached colloids. The validity of the model is tested using Shewanella putrefaciens and nanohematite as model diss...

متن کامل

SIMULTANEOUS REDUCTION OF U(VI) AND Fe(III):

8 Dissimilatory metal reducing bacteria (DMRB) are capable of reducing contaminants such as 9 Cr(VI), Se(VI) and U(VI) during respiration, a process that has a pronounced impact on the 10 mobility of these contaminants in surface and subsurface environments. DMRB can also 11 reduce Fe(III), most commonly associated with solid phase (hydr)oxide minerals such as 12 ferrihydrite, goethite, or hema...

متن کامل

Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene.

Shewanella putrefaciens strain 200 respires anaerobically on a wide range of compounds as the sole terminal electron acceptor, including ferric iron [Fe(III)] and manganese oxide [Mn(IV)]. Previous studies demonstrated that a 23.3-kb S. putrefaciens wild-type DNA fragment conferred metal reduction capability to a set of respiratory mutants with impaired Fe(III) and Mn(IV) reduction activities (...

متن کامل

The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens

Microbial dissimilatory iron reduction (DIR) is widespread in anaerobic sediments and is a key producer of aqueous Fe(II) in suboxic sediments that contain reactive ferric oxides. Previous studies have shown that DIR produces some of the largest natural fractionations of stable Fe isotopes, although the mechanism of this isotopic fractionation is not yet well understood. Here we compare Fe isot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2002